1.2. Lancaster side yard and winter garden 68
1.3. Earthworks and plantings emphasized on periphery of yards 59
1.4. House set low in landscape and prone to flooding 60
1.5. House with landscape regraded to prevent flooding 60
1.6. Site map of property and rainfall income 63
1.7. Site map, with estimated runoff and runon volumes for each type of catchment surface 65

2.1. Series of infiltration basins along curbless street 67
2.2. Lancaster side yard and winter garden 68
2.3. Trees: atop mound, in circular berm, in infiltration basin 69
2.4. Infiltration basins and solar arc of young trees 70
2.5. Trees at full size forming solar arc 70
2.6. Terraced or stepped basins with overflows 71
2.7. Raised path between basins 72
2.8. Basin diameter bigger than tree canopy 72
2.9. Percentage of water absorbed by tree roots, distance from tree center 72
2.10. Large basin divided into small basins 72
2.11. Circular-basin measurements 74
2.12. Rectangular-basin measurements 75
2.13. Infiltration basin spillway and depth 75
2.14. Basins constrained by narrow right-of-way 76
2.15. Water from roof drains away from building 76
2.16. Infiltration basins in small urban yard 76
2.17. Tree crown high and basin beyond canopy 77
2.18. Stabilized spillways connecting terraced basins, sloped site 77
2.19. Stabilized spillways connecting basins, flat site 77
2.20. Spillway with stone stabilization 78
2.21. Planting for water needs and tolerance 79
2.22. Erosive runoff over slope from downsput 80
2.23. Stone-stabilized downsput spillway 80
2.24. Calm outlet of downsput above basin mulch 81
2.25. Basin between two young trees, ready for mulch 81
2.26. Yard with vegetation losing runoff in storms 82
2.27. Same yard with perimeter berm, raised pathway 82
2.28. Beneficial microclimate of sunken garden basin 83
2.29. Sunken garden beds 83
2.30. Milagro Cohousing site plan 84
2.31A. Milagro, newly constructed basins 85
2.31B. Milagro basins mulched and vegetated 85
2.32A. Milagro basins seven years after planting 85
2.32B. Low-tech subsurface clay-pot irrigation 85
2.33A. Garden site fenced and pre-garden 86
2.33B. Volunteers digging sunken garden beds 86
2.34. Sunken garden beds after rain 87
2.35. Established garden beds 87
2.36. Dancing sculpted figure, rain garden, Portland 88
2.37. Celebrate the rain, Portland 89
2.38. Salmon swimming up downsput, Portland 89
2.39. Downsput salmon, green roof, rain garden 89
2.40. Rain garden wall plaque 89
2.41. Flow-through rain gardens, very urban 90
2.42. Daylighted headwaters of Dolph Creek 90
2.43. Berm and basin 91
2.44. Boomerang berms and contour berms 92
2.45. Berm ‘n basins and terraces at varying slopes 93
2.46. Contour line identified and marked 94
2.47. Digging of berm ‘n basin on contour 94
2.48. Cut-away (side) view of berm ‘n basin 95
2.49. Overhead (top) view of berm ‘n basin 95
2.50. Berm thickness and height ratio 96
2.51. Raised path with rock-stabilized edges 96
2.52. Cross section, b’nb depth and width measurement 99
2.53. Perspective view, b’nb length measurement 99
2.54. Berm ‘n basins spacing 99
2.55. Contour berm and rototiller 99
2.56. Undisturbed strip vegeation speeds up revegetation 100
2.57. Vegetation seeds adjacent bare area 100
2.58. Speeding up revegetation with undisturbed strip between multiple basin sections 100
2.59. Failed unlevel berm 101
2.60. Successful level berm 101
2.61. Line of folks stomping berm 101
2.62. Boomerang berms stabilized with rock 101
2.63. Spillway tips 102
2.64. Poorly planned berm ‘n basin 103
2.65. Well-planned berm ‘n basin 103
2.66. One-rock dams placed within berm ‘n basin placed off contour 103
2.67. Contour berms 104
2.68. Unfinished contour berm 104
2.69. Finished contour berm 104
2.70. Boomerang berms overflowing to each other 105
2.71. Less water-tolerant tree placement 105
2.72. Planting on raised pedestals 105
2.73. Boomerang berm with rocked overflow 106
2.74. Net-and-pan system of berms 106
2.75. Net-and-pan berms Aleppo, Syria 107
2.76. Native grass contour plantings 107
2.77. Dryfarmd contour crop plantings, Syria 107
2.78. Contour plantings of veggies in wet climate 108
2.79. Berm as a raised path 108
2.80. Burned trees felled on contour 109
2.81. Plan view of windberms, contour berms, young trees 110
2.82. Side view of windberms, young trees, harvested snow 110
2.83. Contour plantings and b’nb’s, Zimbabwe 112

3.1. Terraces with dry-laid urbanite walls 113
3.2. Terraces with dry-laid stone walls 114
3.3. Strategies for different steepness of slope 115
3.4. Terrace components and measurements 117
3.5. Earthen terrace measurements 117
3.6. Height of terrace retaining wall and depth of cut into slope 118
3.7. Narrow terraces on steep slope 118
12.31A. Bucket your shower’s greywater 360
12.31B. Chuck it to flush toilet or to water plants 360
12.32. Hand pump siphons tub’s greywater to exterior 361
12.33. Food caught in wire screen for kitchen sink 362
12.34. Kitchen Resource Drain (KRD), elevation view 362
12.35. Garden watered with KRD and rainwater 364
12.36. Sapote fruit grown with rainwater and greywater 365
12.37A. Wash and Well (Sitting Tree), front view 367
12.37B. Wash and Well, back view 367
12.37C. Multi-drain greywater system for washer and water filter 367
12.38. Alluvial fan of lint from community laundry 368
12.39. AC condensate overflows from cistern to pond, CAPLA 370
12.40. Urban canyons can be transformed to lush canyons with their harvested “wastes” 370

E.1. Wasteful path to scarcity 374
E.2. Stewardship path to abundance 375

A1.1. Bunyip water level 379
A1.2. Testing the bunyip level; water is level 380
A1.3. Removing air bubbles from tubing 381
A1.4A. Non-vertical bunyip stake gives incorrect reading 382
A1.4B. Bunyip stake vertical for correct reading 382
A1.5. Leapfrogging the bunyip to mark contour line 382
A1.6A. Bunyip shows land slopes toward house 383
A1.6B. Using a bunyip, confirming slope drains away from house 384
A1.6C. Celebrating completion of water-harvesting landscape 385
A1.7. A-frame level 385
A1.8A. Calibrating A-frame, step one 386
A1.8B. Calibrating A-frame, step two 386
A1.8C. Calibrating A-frame, final step 386
A1.9. Using A-frame level, finding and marking contour line 386
A1.10. Line-level A-frame 387
A1.11A. Using laser level to find reference elevation of street-side basin’s curb cut inlet 388
A1.11B. Measuring depth of basin in relation to inlet 388
A1.11C. Measuring planting terrace elevation in relation to inlet 389
A1.11D. Measuring the basin’s downstream top zone in relation to inlet 389
A1.12. Arrow on laser’s receiver signifies direction receiver must be moved to find level 389
A1.13. Checking planting terrace elevation in relationship to inlet with less expensive laser level 390
A1.14A. Tool box level measuring slope of pipe 390
A1.14B. Close up of tool box level bubble vial 390
A1.14C. Vari-pitch vial turned to be viewed from above 390

A3.1. Plan view of KRD, composting toilet, and greywater system 394
A3.2. KRD with auxiliary vent 395